Special Sediment Investigations Mississippi River at St. Louis, Missouri, 1961-63

GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1819-J

Prepared in cooperation with the U.S. Army Corps of Engineers, St. Louis District

Special Sediment Investigations Mississippi River at St. Louis, Missouri, 1961-63

By CLOYD H. SCOTT and HOWARD D. STEPHENS

CONTRIBUTIONS TO THE HYDROLOGY OF THE UNITED STATES

GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1819-J

Prepared in cooperation with the U.S. Army Corps of Engineers, St. Louis District

Four sets of comprehensive hydraulic and sediment data are presented and briefly analyzed

UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary

GEOLOGICAL SURVEY
William T. Pecora, Director

CONTENTS

Abstrac	t
	etion
	lic data
-	eamflow measurements and cross-section areas
Wa	ter-surface slopes
Ene	ergy gradients
Lon	gitudinal bed profiles
Ver	tical distribution of velocity
Con	nputation of average turbulence constant
	t data
	tical distribution of suspended sediment
	ss-section suspended-sediment samples
	-material samples
	Y
Literatu	re cited
	ILLUSTRATIONS
	[Plates are in pocket]
PLATE	1-3. Graphs showing—
	1. Vertical distribution of velocity.
	2. Vertical distribution of suspended sediment.
	3. Relation of z_1 to fall velocity.
FIGURE	1. Map showing study reach of Mississippi River
	2. Graph of transverse profiles of riverbed
	3. Graphs of longitudinal water-surface and energy profiles4. Longitudinal profiles of riverbed through quarter points
	of river width, Apr. 19, 1961, and Apr. 23, 1962.
	5. Longitudinal profiles of riverbed through quarter points
	of river width, Oct. 11, 1962, and Apr. 18, 1963
	52 11.52 Wilding 500. 11, 1002, and 11pr. 10, 1000
	Wilderson Commence of the Comm
	TABLES
TABLE	1. Streamflow measurements from MacArthur Bridge
1 ABLE	 Streamflow measurements from MacArthur Bridge Cross-section data obtained with a depth sounder
	3. Measured velocity at selected points above riverbed
	4. Summary of turbulence constants
	5. Summary of energy gradients
	6-8. Size distributions of:
	6. Suspended sediment and velocity at selected
	points above riverbed
	7. Suspended sediment in cross-section samples
	8. Bed material

CONTRIBUTIONS TO THE HYDROLOGY OF THE UNITED STATES

SPECIAL SEDIMENT INVESTIGATIONS MISSISSIPPI RIVER AT ST. LOUIS, MISSOURI, 1961–63

By CLOYD H. SCOTT and HOWARD D. STEPHENS

ABSTRACT

Four sets of comprehensive hydraulic and sediment data were obtained during 1961-63 for the Mississippi River at St. Louis at ranges of mean velocity from 3.3 to 5.6 feet per second, of mean depth from 22 to ?7 feet, of width from 1,570 to 1,670 feet, of mean water-surface slope from 0.000054 to 0.000109, and of suspended-sediment concentration from 314 to 928 parts per million. The suspended sediment consisted of 9-46 percent sand, 30-46 percent silt, and 20-56 percent clay. The median size of bed material was about 0.42 millimeter for three sets of measurements and about 0.18 millimeter for the other set. A dune bed form was present during all four datacollection periods. Data obtained on consecutive days indicate that the turbulence constant can be computed from either streamflow-measurement notes or from vertical-velocity profiles. Constants computed from streamflow-measurement notes averaged 0.34, and those from vertical-velocity profiles averaged 0.35. The coefficients of vertical distribution of concertration for selected size ranges of suspended sands (expressed as z₁, the slope of the line relating the logarithms of concentration and a depth parameter) plotted against corresponding fall velocities indicate that on the average, the z_1 's are proportional to about the 0.7 power of the fall velocity. The data also indicate that the relation of z_1 to fall velocity may vary with the mean velocity of flow.

INTRODUCTION

Comprehensive data for computation of hydraulic and sediment parameters of the deep flow of large rivers are obtained only rarely. A small amount of such data was obtained for the Mississippi River at St. Louis during 1948–60 and was used by Jordan (1965) as the basis for his discussion of flow resistance, vertical distribution of velocity and suspended sediment, and bed-material discharge of the river at that site. The purpose of the present study was to obtain additional data from which selected hydraulic and sediment parameters could be computed for the deep flows of the Mississippi River at St. Louis. Four sets of data—each including water-surface slopes, computed energy gradients, vertical-velocity

profiles, streamflow measurements, water temperature distribution of sediment in the vertical, and size distributions of suspended sediment and bed material—were obtained in April 1961, April and October 1962, and April 1963. From these data, selected hydraulic and sediment parameters were computed. A detailed explanation of data-collection procedures and computation of the parameters are presented in this report; the data should help solve some problems relating to sediment transport by deep fows.

All the measurements were made in the river reach between mile 176.8 and mile 181.0 upstream from the mouth of the Ohio River (fig. 1). This reach is slightly curved and, except for being slightly wider between miles 177 and 179 than between miles 179 and 181, is of fairly uniform width. MacArthur Bridge, at mile 178.9, was the site of all velocity and water-temperature measurements and of all sampling of suspended sediment and bed material. Measurements of water-surface width and elevation were made at both ends of the reach and at selected intermediate cross sections. The St. Louis District of the U.S. Army Corps of Engineers cooperated in the study by establishing temporary bench marks at several places along the river edge and by operating a depth sounder to determine transverse and longitudinal profiles of the riverbed. During no set of measurements did the river stage fluctuate more than 3 feet; during the last set the range of fluctuation was slightly less than 0.5 foot.

HYDRAULIC DATA

Hydraulic data include streamflow measurements and point velocities obtained at mile 178.9, water-surface slopes, longitudinal and transverse profiles of the riverbed, and cross-section areas at miles 181.0, 178.9, and 176.8 or 177.1. Energy gradients were determined from water-surface elevations and computed velocity heads; turbulence constants were computed from streamflow measurement notes or from vertical velocity profiles.

STREAMFLOW MEASUREMENTS AND CROSS-SECTION AREAS

Streamflow was measured on 3 days during the first datacollection period, on 2 days during each of the second and third periods, and on 3 days during the fourth period (table 1). Additional determinations of streamflow were made from observations of gage height and from stage-discharge relations for the river at Eads Bridge. The determination of shift adjustments to the rating curve was based on streamflow measurements and an assumed straight-line change of shift with time. Cross-section

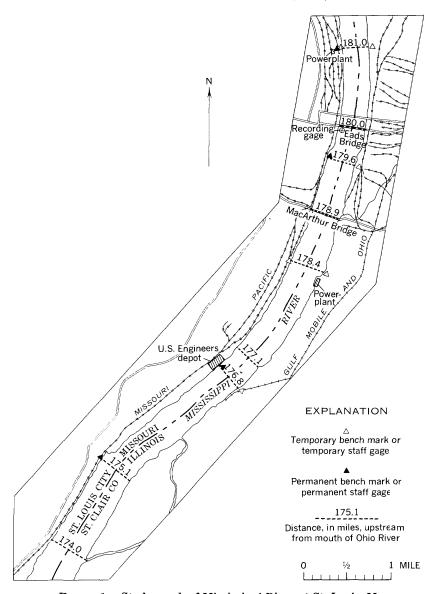


FIGURE 1.—Study reach of Mississippi River at St. Louis, Mo.

areas for intermediate times were determined by plotting areas from streamflow measurements against stage; areas determined from soundings obtained in connection with vertical-velocity measurements were used to aid in interpolating the area-stage relation when only two streamflow measurements were available for a data-collection period.

Table 1.—Streamflow measurements from MacArthur Bridge, mile 178.9

			D istand		er				
Date	Mean time	Gage height (feet)	Right edge of water (feet)	Left edge of water (feet)	Width of water surface ¹ (feet)	Mean depth of water (feet)	Cross-section area (sq ft)	Mean velocity (fps)	Streamflow (cfs)
1961									
Apr. 18	1210 1325 1110	17.18 16.16 14.28	189 195 181	1,879 1,873 1,875	1,636 1,624 1,640	$33.2 \\ 32.4 \\ 31.5$	54,300 52,600 51,600	4.79 4.64 4.28	260,000 244,000 221,000
1962									
Apr. 19 24 Oct. 9 12	1155 0945 0810 0950	22.14 19.72 6.14 7.16	180 175 213 211	1,903 1,895 1,862 1,855	1,669 1,666 1,595 1,590	$37.3 \\ 34.9 \\ 24.5 \\ 25.3$	62,300 58,100 39,100 40,300	5.62 5.18 3.27 3.37	350,000 301,000 128,000 136,000
1963									
Apr. 17 18 19	1040 1045 1125	6.89 6.88 6.60	225 225 225	1,851 1,851 1,851	$\begin{array}{c} 1,572 \\ 1,572 \\ 1,572 \end{array}$	22.3 22.6 21.6	35,000 35,500 34,000	8.80 8.75 8.71	133,000 133,000 126,000

¹ Difference between right and left edge of water minus width of bridge piers (54 ft).

Cross-section areas at other than mile 178.9 were obtained by means of a depth sounder mounted in a boat. A correctly oriented large-scale map affixed to a planetable was used for determining the positions of the boat, and on signal from the sounder operator, the sounder chart and map were marked simultaneously at about 10 points along each section traversed by the boat. Profiles of the riverbed, as determined from the soundings, are shown in figure 2. Cross-section areas determined from the sounded profiles were corrected to the common time of the water-surface-slope determinations by adding or subtracting the net change of gage height multiplied by the average water-surface width of the sounded sections (table 2).

WATER-SURFACE SLOPES

Water-surface elevations used in slope observations were obtained from staff gages set near the water edge (fig. 1). Staff gages were established for each data-collection period, and levels were run from temporary bench marks to establish the elevation of the top of each staff. The water-surface elevation was determined by measuring from the top of the staff to the water surface. When wind, especially if moving generally in an upstream or downstream direction, caused waves that made determination of the water-surface elevation difficult, two independent readings were

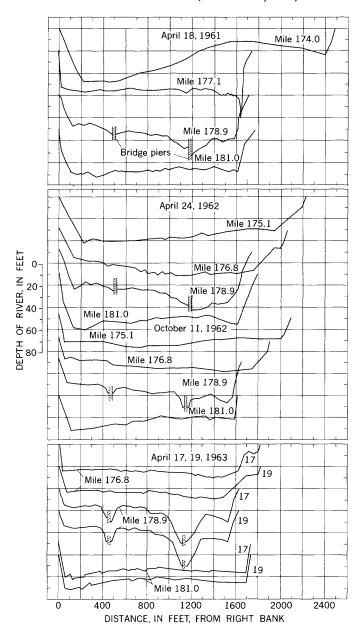


FIGURE 2.—Transverse profiles of riverbed.

Date	Location (miles upstream from Ohio River)	Width (feet)	Mean depth (feet)	Cross- section area (sq ft)	Mean velocity (fps)
1961					
Apr. 18	181.0 177.1	1,760 1,730	$\frac{34.2}{35.1}$	60,220 60,670	4.37 4.33
1962					
Apr. 24	181.0 176.8	$^{1,780}_{2,050}$	$\begin{array}{c} 39.1 \\ 32.3 \end{array}$	69,700 66,400	4.30 4.54
Oct. 11	181.0 176.8	1,610 1,900	$\begin{array}{c} 22.4 \\ 22.1 \end{array}$	$\frac{36,100}{42,000}$	$\frac{3.79}{3.26}$
1963					
Apr. 17	181.0 176.8	1,730 1,820	$\frac{23.9}{22.8}$	41,400 41,400	$\frac{3.22}{3.21}$
19	181.0 176.8	1,730 1,820	$\frac{23.0}{21.6}$	39,850 39,200	3.18 3.22

Table 2.—Cross-section data obtained with a depth sounder

obtained and averaged; the difference between the independent readings was commonly less than 0.05 foot. The water-surface elevations were plotted in the field as a check for errors; where apparently valid elevations seemed to be incorrect compared with other elevations, the staff on the opposite bank was reread as a check. Elevations of staff gages were redetermined whenever it seemed that the staff might have settled.

The water-surface elevation was generally slightly higher on the left side of the river than on the right. Curvature of the channel through most of the study reach may have caused the slight increase in water-surface elevation from right to left. At times, particularly in April 1963, the water-surface elevation on the right bank at mile 181.0 was somewhat inconsistent with the elevation on the left bank; apparently the elevation on the right bank is influenced by a large eddy created by release of powerplant cooling water returned to the river a short distance upstream.

Because the reading of the water-surface elevation at all the staff gages required 3-4 hours, the readings had to be corrected to a common time so they could be used for determining instantaneous slopes of the water surface. The elevations were corrected to a common time from the change of stage per hour at the recording gage located at mile 180.0. To determine whether the changes in stage at the recording gage were representative of the entire reach during each data-collection period, hourly stage readings were obtained from a staff gage at the Corps of Engineers depot at mile 176.8. These readings indicated that the rate of change of

stage at the recording gage was satisfactory for use along the entire reach for all the sets of data.

ENERGY GRADIENTS

The energy gradient was computed by adding a velocity head to the corrected water-surface elevations at miles 181.0, 178.9, and either 177.1 or 176.8. The velocity head was computed from the equation

velocity head
$$= lpha_1 \frac{ ilde{u}^2}{2a}$$
,

where

 \bar{u} is the mean velocity at the cross section,

g is the acceleration of gravity, and

 α_1 is a correction factor.

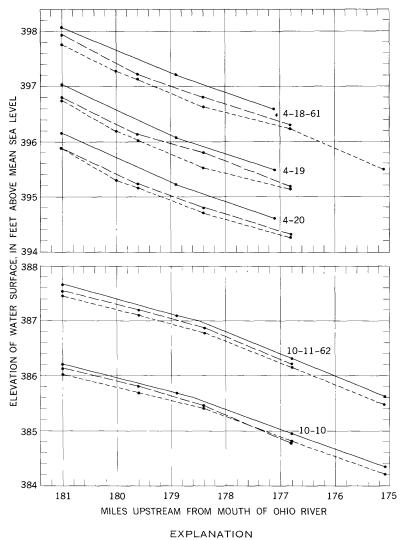
The correction factor is approximated by the equation

$$lpha_1 = rac{\left(rac{{K_a}^3}{{A_a}^2} + rac{{K_b}^3}{{A_b}^2} + \ldots + rac{{K_n}^3}{{A_n}^2}
ight)}{rac{({f \Sigma}K)^3}{({f \Sigma}A)^2}},$$

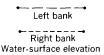
where the subscripts denote subsections in the cross section and

A is the area of the subsection, and

K is equal to $\frac{1.49}{n} AR^{2/3}$, where


R is the hydraulic radius for which mean depth is substituted in these computations, and

n is Manning's coefficient of roughness (Kindsvater and others, 1953).


However, as n for the subsections is unknown, n for the section is assumed to be constant and α is approximated by the equation

$$lpha_1 = rac{(\Sigma A)^{\,2} \, (A_a R_a{}^2 + A_b R_b{}^2 + \ldots + A_n R_n{}^2)}{(A_a R_a{}^{2/3} + A_b R_b{}^{2/3} + \ldots + A_n R_n{}^{2/3})^3}.$$

The water-surface slopes and the computed energy gradients (fig. 3) upstream from mile 178.9 (MacArthur Bridge) may be either higher or lower than the slopes downstream from mile 178.9. The relation between the slopes upstream from the bridge and the slopes downstream from the bridge does not depend on a single variable such as streamflow; instead, it depends on several variables, of which streamflow and scour and fill in the reach are probably the most important. Jordan (1965, p. 29) computed water-surface slopes from gages 4.4 miles upstream and 2.1 miles downstream from mile 178.9 and reported as follows: "During 1950-53, the slopes changed widely from time to time, but the

Water-surface elevation at right bank plus velocity head

FIGURE 3.—Longitudinal water-surface and energy profiles.

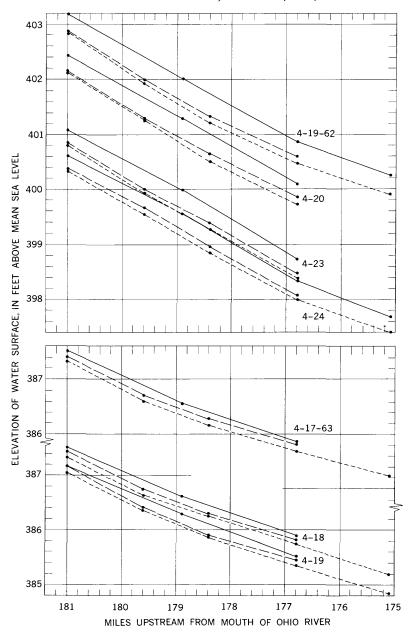
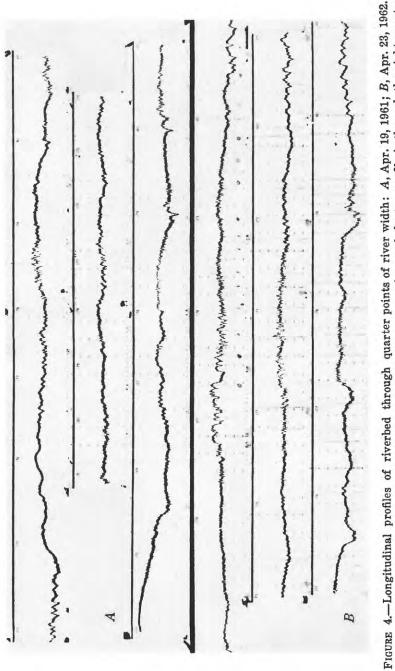
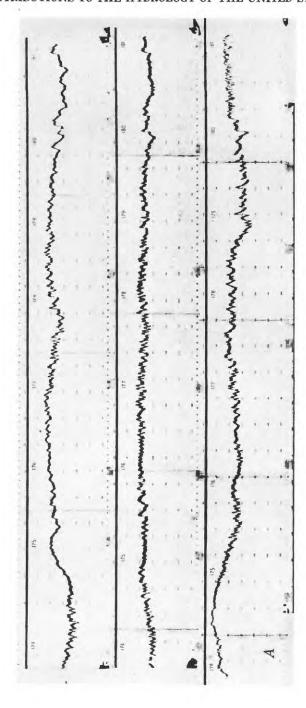


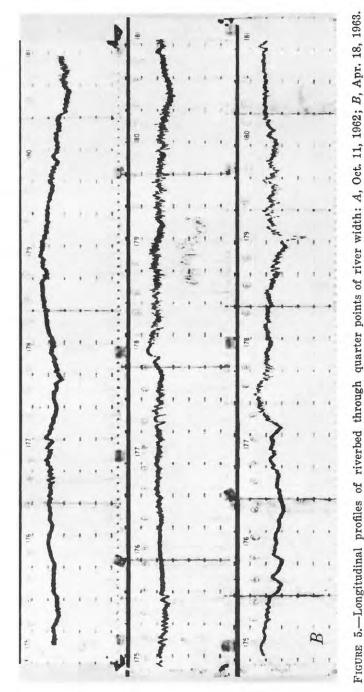
FIGURE 3.—Continued.

slopes upstream and downstream from the bridge were generally about the same at any given time. The slopes in the upstream reach tended to be slightly steeper than the slopes in the downstream reach. During 1954–59, the slopes were fairly constant, but those in the upstream reach were consistently steeper than those in the downstream reach; in 1956–57, the slopes upstream were about twice as steep as those downstream."


LONGITUDINAL BED PROFILES

Using a depth sounder, the Corps of Engineers, St. Louis District, determined the longitudinal bed profile at about quarter points of width for each set of data. (See figs. 4 and 5.) The range lines shown on the charts are not necessarily the same range lines for the different sets of data, but the approximate locations of the mile markers are shown to aid comparison of the profiles; streamflow is in the direction of decreasing mileage. These profiles were obtained to provide data to aid in studies of the relations between bed forms and roughness and in studies of depth effect on bed forms. Also, the profiles were obtained to determine changes in bed configuration that might be related to the breaks in water-surface slopes (fig. 3) and to determine possible causes for the breaks in slope. The left pier of MacArthur Bridge (mile 178.9) causes a definite scour hole and an area of deposition downstream from the bridge on the left side of the channel; the causes for changes in bed elevation and changes in size and shape of dunes at other places in the reach are obscure.


The longitudinal profiles do not show any changes in the bed that might be related, either as to cause or effect, to the breaks in water-surface slopes. The major breaks in water-surface slopes, when they occur, are in the vicinity of miles 179 and 177. There are two bridges in the study reach upstream from mile 179, but there is no bridge in the vicinity of mile 177; however, water-surface width (fig. 1) is somewhat greater between miles 179 and 177 than either upstream or downstream from that reach. A map of a detailed survey of the Mississippi River in the vicinity of St. Louis made by the Corps of Engineers in 1956 showed the reach between miles 179 and 177 to be about 200 feet wider than the reaches upstream and downstream. The location of the breaks in slope seems more likely to be related to changes in channel width and cross-sectional area than to location of bridges.


VERTICAL DISTRIBUTION OF VELOCITY

Point velocities for definition of vertical-velocity profiles (pl. 1) were obtained at about 15 verticals on 1 or 2 days of each data-

In both A and B the bottom profile is through the left quarter points and the top profile is through the right quarter points. Miles increase upstream; major divisions of vertical scale represent 10 feet. Originals on file, U.S. Geological Survey, Lincoln, Nebr.

In both A and B the bottom profile is through the left quarter points and the top profile is through the right quarter points. Miles increase upstream; major divisions of vertical scale represent 10 feet. Originals on file, U. S. Geological Survey, Lincoln, Nebr.

collection period except in April 1963, during which verticalvelocity profiles were obtained only at the 6 verticals used for point sampling. The point-velocity measurements used in preparing the vertical-velocity profiles are presented in table 3. All point velocities were plotted against the logarithm of distance above the bed at the time they were obtained, and any velocities that appeared to be in error (except those obtained to determine short- and long-term changes in the vertical velocity on April 18 and 19) were rerun immediately. On April 18, three velocity profiles were obtained in succession at about 15-minute intervals at station 825, and the three profiles were repeated about 3 hours later. A barge had just passed near the station when the first set of velocity profiles was begun, and it definitely affected the profile at 0905 and probably affected the profile at 0920. The three profiles of the set that was started at 1200 show some variations, as do the profiles of the sets at station 1250 on April 19 beginning at 0935 and 1235. The average slope of the first set of three profiles at station 1250 was considerably different from the slope of the second set of three profiles at the same station. The differences between the average slopes of the sets are caused by shifting of the bed as dunes move through the section.

Table 3.—Measured velocity, in feet per second, at selected points above riverbed, April 1961, April and October 1962, and April 1963

	ght of point ove bed (ft)	Measured velocity	Height of point above bed (ft)	Measured velocity	
	000 000 (),0)		Station		
	196	51	Apr. 20; total d	lepth, 31.4 ft	
	Station	1 300	1.5	1.80	
Apr. 2		24.3 ft; mean time,	2.9		
	1715; gage hei	ght, 14.96 ft	5.3		
	1.5	2.89	11.2		
	2.8	3.00	11.2	2.91	
	4.4		19.1		
	8.3		2101	6.00	
	15.1	4.11	Station 800		
	Station	1 465	Apr. 20; total	depth, 30.8 ft	
Apr. 2		24.5 ft; mean time,	1.5	2.80	
	1700; gage hei	ight, 14.99 ft		3.27	
	1.5	0.86	2.1	2.94	
	2	.93	2.9	3.37	
	2.8	2.16	3.7	3.79	
	3.4	3.07	5.2	4.08	
	4.4	3.27	7.1	4.11	
	6.1	3.76		3.72	
	8.3	4.14	9.9	4.43	
	11.3	4.47	13.5	4.44	
	15.2	4.90	18.8	4.58	
		4.36		4.24	
	20.8	4.88	26.2	5.13	

Table 3.—Measured velocity, in feet per second, at selected points above riverbed, April 1961, April and October 1962, and April 1963.—Continued

eight of point bove bed (ft)	Measured velocity	Height of point above bed (ft)	Measured velocity
Station	875	Station	1300
Apr. 20; total d	lepth, 30.7 ft	Apr. 20; total d	lepth, 45.5 ft
		1.5	2.86
1.5		3.2	
2.9		5.5	
5.2			3.76
9.8	4.40	11.8	4.54
18.7	4.19 5.22	25.2	
Station	075	Station	1400
		Apr. 20; total d	lepth, 47.4 ft
Apr. 20; total d	eptn, 33.1 It		
1.5	2.19	1.5 3.1	
2.9	3 .2 8	6.2	
5.6		13.3	3 64
10.6		27	499
	3.86		5.62
20.1	4.94		5.58
Station		Station	1440
Apr. 20; total d	epth, 35.4 ft	Apr. 19; total d	lepth, 48.7 f
1.5	3 27	1.5	9 71
2.1		2.2	
	3.29	3.1	
3		4.6	
3.9			3.10
5.3	3. 90	6.3	3.33
7.8	4.10		3.33
11		9.2	
15.2	4.90	13.6	
21.2	5.14	19.5	
30.2	5.27		5.40
		27.8	5.45
Station		39.9	
Apr. 20; total d	eptn, 37.3 ft	Apr. 20; total d	enth 47.2 ft:
1.5	2.88		
3	2.99	1.5	
5.6	3.76	2.2	
11.6	4.82	3.1	3.34 2.10
22.4		3.1	3.27
	4.87	4.4	
		6.1	
Station		8.9	2.77
Apr. 20; total d	epth, 38.9 ft	13.2	4 8 7
4 -	2.2~	18.9	5.04
1.5		26.9	
2.1	2.91	38.7	
3		00.1	5.70
4.0	2.78		0.14
4.3	3.72	Station	1515
5.8	4.9 0	Apr. 18; total de	
8.6		į.	
12	4.86	1.5	
		3	
16.7 23.4		5.8	3.73
33.1		12.1	4.72
00.T		24.2	5.53

Table 3.—Measured velocity, in feet per second, at selected points above riverbed, April 1961, April and October 1962, and April 1963.—Continued

Height of point above bed (ft)	Measured velocity	Hei ab	ght of point ove bed (ft)	Measured velocity
Station 15	95		Station 1590-	-Continued
			12	5.09
Apr. 20; total depth, 40. 1300; gage height	. 15.20 ft	me,	16.7	
			23.3	5 53
1.5			33	
3		İ	00	
5.6			Station	1670
11.7		}	Apr. 20; total	
23.4	5.44	i	1.5	
		l l		
Station 15		Į.	3	
Apr. 18; total depth, 39. 1700; gage height	0 ft; mean ti	me,	5.6	
1700; gage height	, 16.90 ft		11.6	
1.5	4.12	1	22.4	4.86
3			Station	1750
5.8	4 64	Apr 9	20 · total depth	35.9 ft. mean time.
0.0	4.00	Apr.	1200 : gage hei	35.9 ft; mean time, ght, 15.25 ft
10 1	4.20 E 96	1	1.5	
12.1				
23.2	5.7 6		3	
Station 15	90		5.4	
				2.15
Apr. 18; total depth, 38. 1600; gage height	o It; mean tii	me,	11.1	2.93
		j	21.6	3.34
1.5	4.29		Station	
	4.32	.		
2.1	4.27	Apr.	18; total depth,	30.9 ft; mean time, ght, 16.96 ft
3	4.68			and the second s
4.2	4.18		1.5	
	4.35	ļ.	2.9	1.93
5.8	5.04	ļ	5.3	
8.4	1 00		9.9	2.39
11.9	E 10	İ	18.8	2.62
16 5	0.4 0	1	104	(9
16.5		İ	196	02
23		i	Station	1 300
32.6	5.90	Apr.		
A 10: total 1	0 44		1620; gage hei	35.1 ft; mean time, ght, 21.31 ft
Apr. 19; total depth, 41. 1600; gage height	U It; mean th	me,	1.5	
			2.5	
1.5	2 . 87		4.1	4.02
2.1	3.09		6.7	4 99
3	3.07			
	3.89		11	
4.1	3.96		18	
	3.37		30	
5.7	3.91	Apr.	23; total depth,	33.7 ft; mean time, ght, 20.13 ft
8.2	4.50			
11.9	5.04		1.5	
16.8	E 9 <i>C</i>		2.4	3.4 0
09.0	0.00		3.9	3.38
23.8	5.7Z		6.2	3.78
33.6	5.99		10	4 14
Apr. 20; total dep	th. 38.8 ft	1	16	
		1	26	
1.5			40	
2.1			Station	
3		1	Apr. 20; total	
	3.75	1	1.5	3. 66
4.3	4.3 9		2.4	
	4 18		3.9	
5.8	4.39	1	6.2	
	4.51		10	5.66
8.5	4 01		16	
12	/ 01		26	
	T•JI	1	4U	0.10

Table 3.—Measured velocity, in feet per second, at selected points above riverbed, April 1961, April and October 1962, and April 1963.—Continued

ht of point ve bed (ft)	$egin{aligned} Measured \\ velocity \end{aligned}$	Height of point above bed (ft)	Measured velocity
Station 400—	Continued	Station 725—	Continued
Apr. 23; total d	epth, 27.7 ft	Apr. 23; total d	epth, 34.2 ft
1.5	2.89	1.5	2.93
2.4		2.5	
3.9		4.1	
6.2		6.7	
U.4	3.57	11	
10		18	
16	E E E	30	
26	0.00 @ 10	90	O.O.I
40	0.10	Station	000
Station	535	Apr. 20; total d	
Apr. 20; total d		Apr. 20; total c	iepin, solv it
		1.5	3.33
1.5		2.5	
2.4	4.36	4.2	
3.9	4.21	7	
6.2		12	
10	<u>5.98</u>	20	
16		33	5.87
26	6.31	00	
Apr. 23; total d	lepth, 30.1 ft	Apr. 23; total o	lepth, 35.1 f
1.5	2 20	1.5	2.77
2.4		2.5	
3.9	4.47	4.1	
ð. <i>ð</i>		6.7	
6.2	3.82	11	5.13
10	4.21	18	
10	4.79	30	
16 26	0.00	90	
		Station 985	
Station Apr. 20; total d		Apr. 20; total d	lepth, 36.5 f
		1.5	3.02
1.5	3.14	2.5	3.23
2.5	2.75	4.2	
4.1	3 . 64	7	
6.7	4.25	12	
11	4.06	20	
18		33	
30	6.10	00	
Apr. 23; total d	epth, 33.8 ft	Apr. 23; total o	lepth, 35.8 f
1.5	3.78	1.5	3.76
2.5		2.5	3.67
4.1		4.1	
6.7	4 60	6.7	4.85
11		11	
18	E 21	18	5.44
30		30	
		Station	
Station Apr. 20; total of		Apr. 20; total	
1.5		1.5	
2.5		2.5	2.51
4.1		4.1	3.£°
6.7		6.7	
11		11	
10	4.49	18	5.73
30		30	

J18 CONTRIBUTIONS TO THE HYDROLOGY OF THE UNITED STATES

Table 3.—Measured velocity, in feet per second, at selected points above riverbed, April 1961, April and October 1962, and April 1963.—Continued

eight of point bove bed (ft)	$egin{aligned} Measured \ velocity \end{aligned}$	Height of point above bed (ft)	Measured velocity	
Station 1100-	-Continued	Station 1390-		
Apr. 23; total d	epth, 37.2 ft	Apr. 23; total d	lepth, 51.5 ft	
1.5	3 49	1.5	3.25	
2.5		2.6		
4,1		4.5		
6.7		7.9		
11		14		
18		**	4.36	
30		24	6.53	
ου		42		
Station	1220			
Apr. 20; total d	epth, 42.6 ft	Station	1450	
1 -	0.40	Apr. 20; total d	lepth, 52.5 ft	
1.5		15	4 1 4	
2.5		1.5		
4.2		2.6		
7		4.5		
12		7.9	5.77	
20		14		
33	6.75	24		
		42	6.75	
Apr. 23; total d	epth, 41.6 ft	Apr. 23; total d	lamah E1 0 fa	
1.5	3.61	Apr. 25, total c	ери, 51.2 г	
2.6		1.5	3 <i>.</i> 59	
4.4		2.6	4.62	
	4.68	4.5	4.14	
7.4		7.9		
13	5.23	14		
22	5.88	24	5.76	
37	6.40	42	6.31	
Station	1200	g	1 202	
Apr. 20; total d		Station 1585 Apr. 20; total depth, 49.5 ft		
1.5		1.5		
2.6	3 .7 3	2.6		
4.4	4 . 75	4.4		
7.4	4.42	7.4		
13	5 <i>.</i> 34	13		
22	5 <i>.</i> 76	22		
37	6 . 75	37	6.75	
Apr. 23; total de	epth, 45.6 ft	Apr. 23; total d	lepth, 47.5 ft	
1.5	3.71	1.5	2.32	
2.6	3.71	2.6		
4.4	3.49	4.4	3.93	
7.4	4.06	7.4	4.69	
13	3.69	13		
22	5.23	22	5.88	
37	6.53	37	6.40	
Station	1390	G4 4*	1057	
Apr. 20; total depth, 54.3 ft		Station Apr. 20; total d		
1.5	3,20	1.5	3 90	
2.6		2.6		
4.5		4.4	1 NA	
7.9	4.90	7.4	1 GQ	
14	5.01	13	2 09	
24	5.88	22	0.90 E GG	
	7.25	44	0.UU	

Table 3.—Measured velocity, in feet per second, at selected points above riverbed, April 1961, April and October 1962, and April 1963.—Continued

Height of point above bed (ft)	Measured velocity	Height of point above bed (ft)	Measured velocity
Station 1675—	Continued	Station 525-	Continued
Apr. 23; total d	epth, 45.9 ft	11	3.75
1.5	3.80	16.4	
2.0	3.78	20,2	3.66
2.6		Oct. 11; total d	_
4.5		1.5	
7.9	4.21	2.3	
14		3.4	
24		5.1	
42	5.7 6	7.6	
Station	1725	11.5	
Apr. 20; total depth, 0930; gage heig	44.0 ft; mean time,	17.4	3.70
0930; gage heig	ht, 21.48 ft	Station	600
1.5	9 91	Oct. 10; total d	epth, 19.0 ft
2.5		1.5	2.74
4.2		2.2	2.79
7		3.3	
12		5	3.21
20		7.4	
33		11	
		16.5	
Apr. 23; total depth, 0900; gage heig	tht, 20.19 ft	Oct. 11; total d	epth, 19.4 ft
		1.5	2.6 9
1.5 2.6		2.3	
4.4		3.4	
7.4		5	
13		7.4	
22		11.1	
	3.98	16.6	
37	4.40	1	3. 97
		Station	
Station		Oct. 10; total d	epth, 20.9 ft
Oct. 10; total depth, 3 0940; gage hei	18.3 It; mean time,	1.0	
		2.3	
1.5		3.4	
2.2			3.07
3.3 4.9		5.2	3.0``
7.2		7.8	
10.8		12 18	
16	2.21		
		Oct. 11; total d	
Oct. 11; total depth, 3 0925; gage hei	20.1 ft; mean time,	1.5	
		4.0	
1.5 2.3	9.01	3.5	
3.4		5.3	
5.1		8.2	
7.6		12.8	3.73
11.5		19.8	
17.4	3.51	Station	
		Oct. 10; total d	
Station		1.5	
Oct. 10; total de		2.3	
1.5		3.5	
2.2		5.5	
3.3		8.4	
5	3.12	13.2	0.05
7.4		20.3	$\frac{3.25}{2.72}$
1.4			

J20 CONTRIBUTIONS TO THE HYDROLOGY OF THE UNITED STATES

Table 3.—Measured velocity, in feet per second, at selected points above riverbed, April 1961, April and October 1962, and April 1963.—Continued

eight of point bove bed (ft)	Measured velocity	Height of point above bed (ft)	Measured velocity	
Station 900-	-Continued	Station 1160—Continued		
Oct. 11; total d	lepth, 25.2 ft	14.4	3.84	
1.5	2 35	22.9		
2.3		Oct. 11; total d		
3.6				
5.5		1.5		
8.6		2.4		
13.6		3.8	3.45	
21.3		6		
		9.5		
Station			3.66	
Oct. 10; total o	1eptn, 25.2 It	15.2	4.06	
1.5	2.56	24	4.29	
2.3		Station	1260	
3.6		Oct. 10; total d	lepth, 24.5 ft	
5.7	3.14	1 5	9.60	
8.8	3.30	1.5		
13.9	3.44	2.3		
21.5	3 . 81	3.6		
Oct. 11; total d	lenth 26.9 ft	5.5		
•	7 .	8.5		
1.5		13.4	4.27	
2.3		20.9	4.27	
0.0	3.07	20.9	4.38	
3.6				
5.7		Oct. 11; total d	lepth, 27.2 ft	
9		1.5	2.87	
14.4		2.3		
22.9	3.99	2.0	3.58	
Station	1100	3.6		
Oct. 10; total d	lepth, 25.9 ft	5.7		
1.5	250		4.17	
2.4		9		
3.7		14.4		
0.1	3.30	22.9		
5.8	9.30 9.14			
0.0	3.46	Station		
9	3.40 9.78	Oct. 10; total d	epth, 32.4 ft	
14.2		1.5	1.92	
22.1		2.5		
44. L	4.14	4.1		
Oct. 11; total d	lepth, 27.6 ft	6.9	3.07	
1.5	3.00	11.3	3.82	
2.4			3.73	
	3.07	19		
3.8	3.58	31.7		
	2.93			
6	3.30	Oct. 11; total de	ep th, 33.7 ft	
9.5		1.5	2.69	
_	3.58	2.6		
15.2		4.3	3.07	
24	4.17	7.3	3.81	
		12.2		
		20.9	4 56	
Station	ienth 97 1 ft	28.4	4.76	
Oct. 10; total d	zepui, 21.1 10			
Oct. 10; total d	2.94	Station	1410	
Oct. 10; total d	2.94 3.05		1410	
Oct. 10; total d	2.94 3.05 3.02	Station	1410 epth, 33.6 ft	

Table 3.—Measured velocity, in feet per second, at selected points above riverbed, April 1961, April and October 1962, and April 1963—Continued

Height of point above bed (ft)	Measured velocity	Height of point above bed (ft)	Measured velociiy
Station 1410-C	ontinued	Station 1625—	Continued
4.3	1.29	3.8	3.07
7.3		9.3	3.66
1.0	1.39	0.0	3.81
12		13.2	
16.6		19.7	
31.4	4.5 6	30.2	4.38
Oct. 11; total dep	•	Station	
1.5		Oct. 11; total depth, 3 1405; gage heig	7.1 ft; mean tin
2.5	2. 87		
4	3.00	1.5	
6.5	2. 87		1.62
10.5		2.5	1.92
17.8		4.1	2.16
29.4	4.47	6.7	2.62
		11.1	
Station 14	75	18.6	
Oct. 10; total der	th, 31.0 ft	31.3	
1.5	2.62		
2.4	2.75	1963	}
3.9	2 03	Station	472
6.5	9 4 4	Station	419
10 5	9.00	Apr. 19; total depth, 1 1125; gage heig	b.0 it; mean tir
10.5	3.99		
27.2		1.5	2.33
28		2.2	
Oct. 11; total der	th, 32.5 ft		2.91
1.5	3.00	3.1	3.20
	2.51	4.5	3.27
2.4			3.20
۵	2.69	6.6	3.42
3.8	9.09	9.4	
6.3	0.75	13.5	
0.0			
10.0	3.22	Station	
10.2	3.81	Apr. 18; total depth, 1 0905; gage heig	6.3 ft; mean tir
16.7	4. 38		
	3.90	1.5	
27.3	4.66	2.2	2. 98
Station 15	50 1	3.2	3 .2 0
Oct. 10; total dep	th, 27.9 ft	4.7	3.71
1.5	3 17	6.9	4.05
2.4	3.06	10.1	3.96
3.8		14.5	3.87
6		Apr. 18; mean time, 092	
		ft	o, gage neight, o
Oct. 11; total dep		1.5	9 73
1.5		2.2	
2.4	2.95	9.9	0.41
3.8	3.14	3.2	
	3.58	4.7	
6.2	4.21	6.9	
9.9	3.66	10.1	
	0.00	14.5	
16	4.69	Apr. 18; mean time, 093	5; gage height, 6.
25.6	4.00 4.76	ft	
		1.5	3.12
Station 16		2.2	3.20
Oct. 11; total dep	•	3.2	3.20
1.5		4.7	2 26
2.4		6.9	ວ.ວບ ຊຸຂຸດ
	ted owing to equip-	10.1	3.63
Station 1550 not comple nt breakdown.	cca owing to equip-	14.5	4 0 =

J22 CONTRIBUTIONS TO THE HYDROLOGY OF THE UNITED STATES

Table 3.—Measured velocity, in feet per second, at selected points above riverbed, April 1961, April and October 1962, and April 1963.—Continued

7 to 67 o ca, 11 pr tt 1	or, iip, to what o cook	50, 100%, with 11p, 10 10	o Continuou
Height of point above bed (ft)	$Measured \ velocity$	Height of point above bed (ft)	Measured velocity
Station 825—	-Continued	Station 1250-	-Continued
Apr. 18; mean time, 12	00: gage height, 6.89	6.2	3 56
ft	, , , , , , , , , , , , , , , , , , , ,	0.2	3.87
	0.04	10	
1.5		10	4.25
2.2		16	
3.2		10	4.83
4.7		25.8	
6.9		29.0	4.00
10.1			1 1 1 4 4 4 4
14.5	4.15	Apr. 19; mean time, 10	
		ft	
Apr. 18; mean time, 12	15; gage height, 6.89	1 5	9.05
ft		1.5	
1.5	2.53	2.4	
2.2		3.9	
3.2			5.05
4.7		6.2	
6.9		10	
10.1		16	4.63
14.5	4 1E	25.8	4.83
14.0	4.10		
Apr. 18; mean time, 12 ft	30; gage height, 6.90	Apr. 19; mean time, 12 ft	
1.5	2.61	1.5	9 01
2.2		2.4	
3.2	2 91	3.9	
4.7		3.9	2.73
6.9		6.2	
10.1		0.2	
14.5	9 69	10	$\frac{3.96}{2.70}$
14.0		10	
Station	1100	1.0	3.49
		16	4.03
Apr. 17; total	neptn, 21.8 ft	25.8	5.06
1.5	3.64		
2.3		Apr. 19; mean time, 12	
3.5		ft	•
5.4	4 25	1 5	0.05
8.4			2.67
13			2.85
19.6	5.31	3.9	2.98
		10	2.98
Station	1250	10	
Apr. 19; total depth,	28 5 ft : man time	1.0	3.87
0935; gage he	ight. 6.58 ft	16	
, , , , , , , , , , , , , , , , , , , ,	-30, 0100 10		4.44
1.5	3.27	25.8	4.83
2.4	3.4 9		
3.9	3.42	Apr. 19; mean time, 13	305: gage height, 6.64
6.2	3.79	ft	
10			
16		1.5	2.61
	4 63	2.4	2.61
25.8	4.73	3.9	3.36
		1	3.49
Apr. 19; mean time, 09	50; gage height, 6.59	6.2	3.42
11		10	
1.5	2.98	16	
2.4			4.63
3.9		25.8	4.UU 1 QQ
0.0		40.0	4.00

Table 3.—Measured velocity, in feet per second, at selected points above riverbed, April 1961, April and October 1962, and April 1963.—Continued

Height of point above bed (ft)	$Measured \ velocity$	Height of point above bed (ft)	Measured velocity
Station Apr. 18; total d		Station Apr. 17; total	
1.5 2.5 4.2 7	3.49 3.63	1.5	$egin{array}{cccccccccccccccccccccccccccccccccccc$
11.8 19.8 36.6	4.25 4.44 4.73	9.3 14.8 23	4.54 4.64

COMPUTATION OF AVERAGE TURBULENCE CONSTALT

The turbulence, or Karman, constant, k, can be computed from the equation

$$k = \frac{2.30u_*}{(V_{10y} - V_y)},$$

where

 u_* is the shear velocity equal to $\sqrt{gDS_e}$, where

g is the acceleration of gravity,

D is the depth, and

 S_e is the energy gradient,

V is the velocity, and

y is the distance above the river bed.

The velocities at distances 10y and y above the riverbed are taken from the line of best fit of the vertical-velocity profiles. The average turbulence constant for a cross section can be obtained in two ways: it can be computed from an average u_* and the average velocity differences, or it can be computed for each vertical and the individual k's averaged. According to Colby (in Jordan, 1935, p. 54), the turbulence constant can also be computed as

$$k = \frac{1.39u_*}{(V_{4y} - V_y)},$$

where u_* is computed from the mean of depths at the measuring verticals and the velocity differences at distances 4y and y from the bed are from the 0.2 and 0.8 depth velocities obtained for the streamflow measurement. The average u_* and average velocity differences are used in computing k from the streamflow measurement data; therefore, the averaging procedure corresponds to the first method described above. Depths and velocity differences for verticals near the banks, where bank resistance has an ap-

preciable effect on the vertical-velocity profile, are not included in the computations of average constants.

Turbulence constants computed from data obtained on consecutive days (table 4) indicate that data from either streamflowmeasurement notes or from vertical-velocity profiles are satisfactory for computing k for flows at St. Louis; Colby (in Jordan, 1965, p. 42-56) also found that the turbulence constants could be computed from either type of data. All turbulence constants for the set of data obtained April 16-20, 1963, were computed from streamflow-measurement notes. The averages of all k's computed from streamflow-measurement notes and from average velocity difference and average depth at each vertical are 0.34 and 0.35, respectively. Colby (in Jordan, 1965, p. 54) found the averages of k's computed by the same procedures to be 0.33 and 0.35, respectively. The average (0.38) of all k's in the last column of table 4 is somewhat higher than the average from either of the other computations because of the difference in the procedures used in computing the individual k's.

In the computation of shear velocity (u_*), the energy gradient, S_e , appears under the square-root sign. If a 5 percent error in k due to incorrect energy gradient is acceptable, then the energy gradient may differ as much as ± 10 percent from the true energy gradient. As energy gradients are likely to range from 0.3 to 0.8

Table 4.—Summary of turbulence constants

	Turbuler	nce constant, k , computed	l from
Date	Streamflow- measurement data	Average velocity difference and average depth at each vertical	Average of k's at each vertical
1961			
Apr. 19	0.31	0.32	0.34
21	.30	0.32	0.04
1962			
Apr. 19	.35		
23		.40	.43 .40
Oct. 9	.40 .30		
11		.30	.36 .36
12	.35		
1963			
Apr. 17	. 32 . 35		
19	.35		

foot per mile for most flows at St. Louis, the assumed energy gradient could differ from the true energy gradient by 0.03 foot per mile for the least steep slope to 0.08 foot per mile for the steepest slope; the difference for 4 miles could range from 0.12 to 0.32 foot.

The k's were computed from the energy gradients determined for the reach from mile 181.0 to mile 177.1 or from mile 181.0 to mile 176.8; the break that generally occurs in the energy gradient in the vicinity of mile 178.9 was ignored. Although the errors caused by inaccurate measurement of the water-surface slopes over the entire reach probably are well within the 5 percent assumed as a reasonable limit, the break in the energy gradient that generally occurs at mile 178.9 could cause appreciable differences in the computed k if the energy gradient upstream or downstream from mile 178.9 is used in the computation of u, rather than the gradient for the reach from mile 181.0 to 176.8 or 177.1. In April 1962, the slopes (table 5) upstream and downstream from mile 178.9 were within ± 10 percent of the slope over the entire reach, but in April 1961, October 1962, and April 1963, the highest and lowest slopes differed more than 10 percent from the slope over the entire reach. The maximum difference between the computed energy gradient over the entire reach and the computed energy gradient upstream or downstream from mile 178.9 occurred in the April 1961 data; it was about 17 percent.

SEDIMENT DATA

Each set of sediment data consists of point samples, cross-section samples, bed-material samples, and water temperatures. The size distribution of material 2.0 millimeters and larger was determined by sieving, and that of material smaller than 2.0 mm by fall-diameter methods. The visual-accumulation-tube method was used for material between 1.0 mm and 0.062 mm, and the pipet method for material less than 0.062 mm.

VERTICAL DISTRIBUTION OF SUSPENDED SEDIMENT

Point-integrated samples were obtained on the 2d, 3d, and 4th days of each data-collection period except in the April 1962 period when they were obtained on 4 days. Each vertical was sampled at three to six depths, and the depths at which the samples were taken were selected so that the differences in the logarithms of (D-y)/y (where D is depth and y is distance above the bed) were about equal. In April 1961, April 1962, and April 1963, the samples were obtained with a U.S. P-46 sampler having an addi-

TABLE 5.—Summary of energy gradients
[Water-surface elevation is corrected to common time of 1000 for 1961 and 1100 for 1962-63]

	Miles 178.9–177.1	0.000063 .000063 .000063	Miles 178.9–176.8	0.000106 .000110 .000111 .000111 .000066 .000065 .000065 .000065
Energy gradient	Miles 181.0-178.9	0.000078 .000088 .000084		.000005 .000098 .000098 .000098 .000096 .000085 .000085
	Miles 181.0-177.1	0.000072 .000076 .000076	Miles 181.0-176.8	0.000105 .000108 .000103 .000103 .000057 .000061
	Mile 177.1	0.30 28 26 26	Mile 176.8	0.40 .37 .34 .34 .15 .17
Velocity head (feet)	Mile 178.9	0.38		50 448 443 443 116 123 223 223 223
	Mile 181.0	0.31 .29 .27		.35 .33 .30 .30 .23 .23 .16 .16
ation	Mile 177.1	396.30 395.20 394.33	Mile 176.8	400 47 399 73 398 40 398 40 384 80 386 15 385 70 385 74 385 74
Water-surface elevation at right bank (feet)	Mile 178.9	396.84 395.72 394.89		401 54 400 84 399 57 399 14 385 52 386 92 386 35 386 35 386 39
Wat	Mile 181.0	397.78 396.76 395.88		402 85 402 14 400 78 400 33 386 01 387 45 387 36 387 36 387 36
Date		Apr. 18		Apr. 19. 20. 20. 24. Oct. 10. 1963 Apr. 17.

tional sounding weight suspended below. The lowest sampling point was about 1.8 feet above the bed because the additional weight prevented sampling closer. In October 1962, no sounding weight was used and the lowest sampling point was 1.5 feet above the bed. The number of verticals that could be sampled in a day depended on the concentration of sand. If the concentration of sand was relatively high, three verticals could be sampled per day; however, if the concentration was relatively low, only one or two could be sampled because a larger sample had to be obtained at each point to insure that enough material was available for a reliable analysis of particle-size distribution. The verticals at which point samples were obtained were selected to represent subsections of about equal flow.

The sample from each point in the vertical was analyzed for concentration of suspended sediment and particle-size distribution (table 6). The concentration for various size ranges was computed as the product of the sample concentration and the decimal portion of the sample in the size range, as determined from the size analysis. The slope, called z_1 , of the relation of the logarithm of the concentration of various size ranges (C_y) plotted against the logarithm of (D-y)/y defines the vertical distribution of sediment concentration for the various size ranges of sand (pl. 2). The vertical distribution of sediment for various size ranges can be computed from the theoretical equation

$$z = \frac{V_s}{ku_{\star}}$$
,

where

- V_s is the fall velocity of the geometric mean size of the size range in question,
- k is the turbulence, or Karman, constant, and
- u, is the shear velocity equal to $\sqrt{gDS_e}$.

The energy gradient enters the computation of u_* to the one-half power; therefore, the computed z varies inversely with the one-half power of the energy gradient. The energy gradient upstream and downstream from mile 178.9 can vary considerably from the average gradient over the entire reach, but the percentage variation in the computed z's will be less than the percentage variation of the gradient upstream and downstream from the average gradient. The fall velocity enters to the first power in the computation of z, but the relation of the measured z_1 to fall velocity indicated that the power of the fall velocity should be less than one (pl. 3). The fall velocities are from a report of the U.S. Inter-Agency Committee on Water Resources (1957, table 2). The

J28 CONTRIBUTIONS TO THE HYDROLOGY OF THE UNITED STATES

Table 6.—Size distribution of suspended sediment and velocity at selected points above riverbed, April 1961, April and October 1962, and April 1963

	[Velocity computed	from samp	le volume,	filling t	ime, and	nozzle size]
--	--------------------	-----------	------------	-----------	----------	--------------

						Susper	nded s	edime	nt			
Mean time	Gage height (feet)	Water temperature (°F)	Height of point above bed (feet)	Velocity (fps)	Concen- tration	Percent finer than indicated size (mm)						
					(ppm)	0.062	0.125	C.250	0.500	1.000		
				1961								
				Station 465 total depth,	25.8 ft							
1357 1424 1452 1603		52 52 52 52 52	1.8 6.4 14.2 21.9	2.49 3.37 4.16 4.57	1,200 1,150 1,050 987	81 85 90 94	87 91 96 98	99 100 100 100	100			
		,		Station 800 total depth	, 31.8 ft	, , ,		<u> </u>	·	·		
1432 1452 1520 1553 1621 1759		49 49 50 50 50 50	1.8 4.0 9.5 17.5 24.8 28.9	3.05 3.29 4.62 4.63 4.83 5.06	1,360 1,310 1,210 1,150 1,100 1,050	78 82 87 90 95 96	84 87 92 94 98	96 98 99 100 100 100	100 100 100			
		<u> </u>		tation 1050 total depth,	36.2 ft				1			
1102 1118 1132 1152 1216 1250		50 50 50 50 50 50	1.8 4.7 10.9 19.9 28.2 32.9	1.59 3.45 4.16 4.21 5.08 5.21	1,070 986 902 876 788 766	74 79 85 88 93 94	81 86 92 94 97 98	92 97 100 100 100 100	100			
				tation 1250 total depth,	41.2 ft							
1532 1550 1604		48 48 48	1.8 4.5 11.1	1.99 4.64 4.30	1,560 1,170 1,120	61 80 83	66 86 88	79 98 99	98 100 100	100		
				tation 1250 total depth	, 39.5 ft							
0840 0856 0911 0933 0954 1018		49 49 49 49 49 49	1.8 5.2 11.9 21.7 30.8 35.9	3.99 4.44 5.41 5.21 5.34 5.47	1,000 808 711 640 634 578	59 70 81 84 87 90	67 78 89 90 94 96	83 96 100 100 100 100	100			
				tation 1440 total depth								
1012 1034 1052 1117 1145 1210		48 48 48 46 46 46	1.8 5.3 13.0 25.4 37.1 43.8	2.87 3.53 4.28 5.74 6.17 5.89	862 1,060 720 547 420 418	56 52 69 80 89 92	61 59 77 88 93 96	99 93 99 100 100	100 100 100			

Table 6.—Size distribution of suspended sediment and velocity at selected points above riverbed, April 1961, April and October 1962, and April 1963—Continued

Con	tinued											
			Height			Susper						
Mean time	Gage height (feet)	Water temperature (°F)	of point above bed (feet)	Velocity (fps)	Concen- tration	Percent finer than indicated size (inm)						
					(ppm)	0.062	0.125	0 250	0 250 0 500 1.00			
		_		tation 1580 total depth,	41.8 ft							
1111 1136 1155		45 45 45	1.8 4.6 11.3	2.61 2.56 4.05	1,210 956 655	33 40 60	38 47 66	99 98 99	100 100 100			
1222 1255 1325		45 46 46	11.3 22.2 32.2 38.0	4.59 4.96 5.21	462 350 312	70 87 93	77 92 96	100 100 100				
				1962	1	<u> </u>			1	<u> </u>		
				station 400 total depth,	33.3 ft							
1340 1357 1428	20.11	52	1.8 5.7 14.0	$2.52 \\ 3.69 \\ 4.46$	2,000 789 603	19 47 63	24 57 71	51 76 88	97 98 100	100 100		
1440 1501		55	23.3 30.3	4.46 5.48	478 406	73 86	84 92	96 100	100			
				Station 725 total depth,	38.7 ft							
1454 1516	22.06	51	1.8 6.4 16.2	4.25 3.70 3.96	964 734	36 49	42 59 75	52 72 88	87 96 98	99 100 100		
1530 1545 1600		51 51	28.3 35.2	6.12 6.57	553 452 390	62 72 81	84 91	96 99	98 100	100		
				station 725 total depth,	35.3 ft							
1438 1454	19.64	57 55	1.8	3.30 4.66	541 540	51 55	64 67	83 86	98 100	100		
1508 1538 1615		55 55 55	14.8 26.0 32.1	5.24 5.74 6.75	536 307 319	70 78 84	82 89 92	96 99 99	100 100 100			
	,			station 985 total depth,	41.6 ft	<u> </u>						
1356 1414 1432	21.34	50 50 50	1.8 5.8 16.2	3.00 3.83	844 520 436	34 50	42 65	58 82 90	95 99 100	100 100		
1452 1452 1718		50	30.0 37.9	4.38 5.46 5.76	333 317	63 75 80	75 87 89	98 99	100 100 100	 		
				station 985 total depth,	36.3 ft							
1616 1633	20.06	55	$ \begin{array}{c c} 1.8 \\ 6.2 \\ 15.2 \end{array} $	4.14 4.55	447 421	44 56	55 67	87 84	100 100			
1713 1756 1818		56	26.4 33.0	4.91 5.20 5.44	364 322 270	64 71 84	78 84 91	92 97 99	100 100 100			
		·								<u> </u>		

J30 contributions to the hydrology of the united states

Table 6.—Size distribution of suspended sediment and velocity at selected points above riverbed, April 1961, April and October 1962, and April 1963—Continued

						Suspe	nded s	edimer	ıt	
Mean time	Gage height (feet)	Water temperature (°F)	Height of point above bed (feet)	Velocity (fps)	Concen- tration	Pero	ent fir	ner tha		cated
					(ppm)	0.062	0.125	C.250	0 500	1.000
				tation 1220	40.0.4					
		1	Apr. 19;	total depth,	43.2 It					
$\frac{1632}{1646}$	22.00	50 50	1.8 6.0	3.42 3.94	648 518	34 41	40 48	50 61	100 100	
1702 1717		50 50	16.9 31.1	5.94 7.02	291 241	73 84	80 87	93 97	100 100	
1743		50	39.3	6.99	225	87	92	98	100	
				tation 1220 total depth,	41.6 ft					
1210	19.67	54	1.8	3.84	422	48	55	67	99	100
$^{1229}_{1248}_{1308}$		54 54 54	5.8 16.2 30.0	$egin{array}{c} 4.15 \ 4.95 \ 6.02 \ \end{array}$	368 282 235	57 72 85	64 80 91	75 91 98	98 100 100	100
1334		54	37.9	6.46	219	90	95	100		
				tation 1450 total depth,	53.6 ft					
1020	21.45	50	1.8	3.55	1,020	19	20	32	100	100
$1036 \\ 1056 \\ 1126$		50 50 50	6.4 19.8 38.1	4.63 5.24 6.50	458 320 237	41 57 77	44 62 82	58 74 90	98 100 100	100
1154		50	48.8	6.71	214	86	90	96	100	
				tation 1450 total depth,	49.8 ft					
1028	20.14	53	1.8	4.17	561	34	38	48	99	100
$\begin{array}{c} 1118 \\ 1136 \\ 1222 \end{array}$		53 53 53	7.0 19.4 35.9	$egin{array}{c} 4.60 \ 5.02 \ 5.24 \end{array}$	343 262 226	55 73 84	57 79 88	69 86 95	100 100 100	
1245		53	45.3	5.86	210	88	92	97	100	
				tation 1670 total depth,	49.4 ft					
1257	22.10	51	1 0	4.75	418	43	10	7.5	100	1
$1312 \\ 1326$	22.10	51 51 51	1.8 6.9 19.3	4.75 4.72 5.99	283 222	69 83	46 73 85	75 87 94	100 100 100	
1346 1401		51 51	35.6 45.0	5.37 5.77	207 199	84 91	85 87 95	94 98	98	100
_				tation 1685 total depth,	45.1 ft	1		1 .	·	.1
					1	1		1	·	1
0928	19.72	55	1.8	3.72	374	53	55	95	100	
0928 0944 1002 1028	19.72	55 54 54 54	1.8 6.3 17.6 32.5	3.72 4.00 4.55 5.23	374 235 208 198	53 78 90 92	55 80 92 94	95 94 98 99	100 100 100 100	

Table 6.—Size distribution of suspended sediment and velocity at selected points above riverbed, April 1961, April and October 1962, and April 1963—Continued

Cont	inuea											
						Suspe	nded s	edime	nt			
Mean time	Gage height (feet)	Water temperature (°F)	Height of point above bed (feet)	Velocity (fps)	Concen- tration	Percent finer than indicated size (mm)						
					(ppm)	0.062	0.125	0.250	0.500	1.000		
				station 600 total depth,	20.3 ft							
0825 0850	7.05 7.08	67	1.5 4.7	2.58 3.24	513 450	86 95	90 98	99 100	100			
0921 1 008 1137	7.11 7.15 7.20	67	10.0 15.6 18.3	$3.55 \\ 3.83 \\ 3.94$	430 418 403	97 98 98	98 99 100	100 100				
	<u> </u>	<u> </u>		tation 1160 total depth,	26.9 ft	†	<u> </u>	!	1	<u> </u>		
0902 0928	5.81 5.81	66	1.5 5.2	2.65 3.46 3.70	497 323	53 80	65 87	96 100	99	100		
1004 1117 1241	5.81 5.78 5.76 5.76	66	5.2 12.3 21.0 24.8	3.70 4.07 4.11	283 264 252	88 93 96	94 96 99	100 100 100				
	<u> </u>	1	s	tation 1550	1	1			1	· · · · · ·		
			Oct. 9; t	otal depth,	29.3 ft							
0939 1016 1205	6.14 6.13 6.11	65	1.5 5.4 13.0	$\begin{array}{c} 2.39 \\ 3.74 \\ 3.92 \end{array}$	238 166	48 64 75	57 75 84	91 98 100	98 100	100		
1312 1429	6.09 6.07	68	22.5 26.5	4.48 4.53	145 122 124	85 86	91 91	100 100				
				1963						-		
				Station 475 total depth	15.2 ft							
1244	6.64	64	1.8	3.11	593	68	73	98	100			
1258 1318 1400	6.64 6.65 6.67	64 64 64	4.4 8.2 12.2	3.17 3.46 4.03	501 480 405	79 86 98	83 90 96	99 100 100	100			
	<u> </u>			Station 825 total depth,	16.5 ft	1	<u> </u>	<u> </u>	1	<u> </u>		
1225 1323 1406	6.90 6.90 6.90	63 63	1.8 11.5 14.0	2.49 4.01 4.18	1,380 358 327	52 83 89	57 86 93	96 100 100	100			
				tation 1100 total depth,	23.5 ft							
1258 1323 1340	6.87 6.87 6.88	61	1.8 5.1 11.2	2.80 4.31 4.47	1,360 441 285	16 47 71	19 55 79	87 100 100	99	100		
1402 1440	6.89 6.93		17.5 21.4	5.23 5.54	256 204	78 88	84 92	100				

Table 6.—Size distribution of suspended sediment and velocity at selected points above riverbed, April 1961, April and October 1962, and April 1963—Continued

						Suspe	nded s	edimer	nt	
Mean time	Gage height (feet)	Water temperature (°F)	Height of point above bed (feet)	Velocity (fps)	Concen- tration	Per		n indi	n indicated 1)	
	(1111)		,		(ppm)	0.062	0.125	0.250	0 500	1.000
				tation 1250 total depth,	28.5 ft					
1006 1105 1146	6.59 6.61 6.63	61 62	$\begin{array}{c} 1.8 \\ 21.0 \\ 25.0 \end{array}$	3.57 4.86 5.10	494 214 179	43 75 85	49 80 89	100 100 100		
				tation 1450 total depth,	39.0 ft					_
0908 1010 1100	6.89 6.89 6.89	61 60	$ \begin{array}{c} 1.8 \\ 28.2 \\ 35.5 \end{array} $	2.91 4.66 4.81	542 99 92	19 82 89	$\begin{vmatrix} 22\\ 85\\ 91 \end{vmatrix}$	100 100 100		
				tation 1650 total depth,	. 27.5 ft					
1004 1024 1041 1113 1146	6 91 6.91 6.90 6.90 6.90	61	1.8 5.4 12.5 20.3 25.0	3.83 4.24 4.40 4.94 5.16	295 203 145 102 88	28 40 56 79 91	33 43 60 83 95	98 100 100 100 100	100	

value of the power varies widely for individual verticals, but the average is about 0.69 for all measurements obtained for the comprehensive sets of data.

Other investigators (Anderson, 1942; Colby and Hembree, 1955) have presented data which show that z_1 's for sand sizes vary with about the 0.7 power of the fall velocity. The relation of z_1 to fall velocity, however, seems to vary with streamflow for the deep flows at St. Louis. In April 1962, the streamflow was more than 300,000 cubic feet per second and z_1 varied, on the average, with about the 0.8 power of the fall velocity; in April 1961, the streamflow was near 250,000 cfs and z_1 varied with about the 0.7 power of the fall velocity. In October 1962 and April 1963, the streamflow was about 130,000 cfs and the z_1 's varied with about the 0.69 and 0.54 powers of the fall velocities, respectively. Streamflow and mean velocity are rather closely related for the Mississippi River at St. Louis, and the average z_1 may, therefore, correlate with mean velocity and, possibly to some extent, with temperature; there are too few comprehensive sets of data available for a check.

CROSS-SECTION SUSPENDED-SEDIMENT SAMPLES

A U.S. P-46 sampler was used to obtain cross-section suspended-sediment samples at the beginning and end of each sampling period except April 1961, when samples were obtained on only 1 day. All samples were collected by the equal-transit-rate method using 10 verticals in the cross section. The cross-section samples were collected in duplicate; one was analyzed for concentration and the other for size distribution (table 7).

		(<u> </u>	Suspended sediment											
	Be	tem- ture (°F)	ow (cfs)	n- tion	ge per	Percent finer than indicated size (mm)									
Date	Mean time	Water tem perature	Streamflow	Mean con- centration (ppm)	Discharge (tons per day)	0.002	0.004	0.008	0.016	0.031	0.062	0.125	0.250	0.500	1.000
1961															
Apr. 21	1040	52	221,000	645	385,000	36	41	47	57	71	85	90	98	100	
Apr. 17 0ct. 8 12	1230 1220 1020 1300	48 56 65 68	363,000 297,000 131,000 136,000	455 314 318 328	$\begin{array}{c} 446,000 \\ 252,000 \\ 112,000 \\ 120,000 \end{array}$	29 33 56 43	32 35 56 45	39 39 60 53	48 48 63 63	82	69 74 91 91	76 84 95 95	85 95 100 100	99 100 	100
1963 Apr. 16 20	1235 0950	58 62	137,000 124,000	318 415	118,000 139,000		28 20		36 31	50 	58 54	64 57	100 99	100°	

The concentration of sand is generally very low for the deep flows of the Mississippi River at St. Louis. The measured concentrations of sand for samples obtained for this study ranged from about 29 parts per million on October 8, 1962, to about 190 ppm on April 20, 1963. The extremes of the variation occurred during the two periods when the streamflows and measured total concentrations were nearly the same. In October 1962, only 9 percent of the suspended sediment was sand, whereas in April 1963 about 44 percent of the suspended sediment was sand; however, the average velocity and average depth (table 1) were about 3.30 feet per second and 25 feet in October 1962 and 3.80 feet per second and 22 feet in April 1963.

BED-MATERIAL SAMPLES

A BM-54 sampler was used to collect bed-material samples 1 or 2 days before and again 1-4 days after the suspended-sediment data were obtained. Samples of bed material were generally

collected at about 30 equally spaced points in the cross section and were analyzed to determine particle-size distribution (table 8).

The size distribution of bed material varied somewhat; generally about 50–60 percent of the sediment was in the size range of 0.062–0.500 mm, and the median size was about 0.42 mm for the samples obtained in 1961 and in 1962. In April 1963, however, the amount of finer sediment had increased; about 95 percent of the sediment was in the size range of 0.062–0.500 mm, and the median size was about 0.18 mm. The increase of fine sediment ir the bed is reflected in the increase in percentage of sand in suspension. The size distribution of bed material at individual verticals in the cross section was quite variable; however, in 1961 and 1962, the size of bed material in the right half of the channel was larger than that in the left half. In April 1963, when the mean size of bed material in the cross section was only about 0.18 mm, the mean sizes in the right and left half of the channel also were about 0.18 mm.

	Number of	Streamflow	Percent finer than indicated size (mm)										
Date	sampling points	(cfs)	0.062	0.125	0.250	0.500	1.000	2.000	4.000	8.000	16.00	32.00	
1961													
Apr. 17 21 1962	28 19	290,000 220,000	3 0	5 1	33 32	64 55	87 83	93 92	97 97	99 99	100 100		
Apr. 18 26 Oct. 8 15	29 29 30 29	354,000 296,000 130,000 131,000	6 3 4 3	6 5 9 7	16 10 24 22	63 52 60 54	85 80 82 77	90 88 87 84	94 93 93 90	96 96 97 95	99 99 99 99	100 100 100 100	
1963 Apr. 15 20	30 30	145,000 123,000	0	2 2	80 84	95 95	99 98	100	99	100			

Table 8.—Size distribution of bed material

SUMMARY

Four sets of comprehensive hydraulic and sediment data for deep flows are presented with explanations of field and computational procedures. These data cover a range of mean velocity from 3.3 to 5.6 feet per second, mean depth from 22 to 37 feet, and suspended-sediment concentration from 314 to 928 ppm, of which 9–46 percent was sand. The median size of bed material was about 0.42 mm for three of the sets of measurements but only about 0.18 mm for the other set.

Hydraulic data included streamflow measurements, water-surface slopes, cross-sectional areas, and point velocities. Energy gradients were computed by adding a velocity head to the watersurface elevations. Water-surface slopes and computed energy gradients generally break in the vicinity of mile 179. Longitudinal profiles did not show any bed-configuration changes that might be related to breaks in slope, and the breaks in slope seem likely to have been related to changes in channel width and cross-sectional area in the study reach. The maximum difference between the computed energy gradient over the entire study reach and the computed energy gradient upstream or downstream from the break was about 17 percent. The average turbulence, or Karman, constant was computed by three methods, but two of the methods were similar because both were computed from average shear velocities and average velocity differences. Measurements obtained on consecutive days indicated that data from either streamflowmeasurement notes or from vertical-velocity profiles were satisfactory for computation of the turbulence constant. The turbulence constants computed from streamflow-measurement data ranged from 0.31 to 0.40 and averaged 0.34; the constants computed from vertical-velocity profiles ranged from 0.32 to 0.40 and averaged 0.35.

The sets of sediment data consisted of point samples, cross-section samples, bed-material samples, and water temperatures. Vertical distributions of concentration of various size ranges of sand were used to define z_1 's. The z_1 's for various size ranges plotted against corresponding fall velocities indicated that the average power of the fall velocity in the relation $z = V_s/ku_*$ should be about 0.7. The data also indicated that the relation of z_1 's to fall velocity may vary with the mean stream velocity.

LITERATURE CITED

- Anderson, A. G., 1942, Distribution of suspended sediment in a natural stream: Am. Geophys. Union Trans., 23d Ann. Mtg., pt. 2, p. 678-683.
- Colby, B. R., and Hembree, C. H., 1955, Computations of total sediment discharge, Niobrara River near Cody, Nebraska: U.S. Geol. Survey Water-Supply Paper 1357, 187 p.
- Jordan, P. R., 1965, Fluvial sediment of the Mississippi River at St. Louis, Missouri: U.S. Geol. Survey Water-Supply Paper 1802, 89 p.
- Kindsvater, C. E., Carter, R. W., and Tracy, H. J., 1953, Computation of peak discharge at contractions: U.S. Geol. Survey Circ. 284, 34 p.
- U.S. Inter-Agency Committee on Water Resources, 1957, Some fundsmentals of particle size analysis, Rept. 12 in A study of methods used in reasurement and analysis of sediment loads in streams: 55 p.

